3.384 \(\int \frac{x}{\sqrt{1+a^2 x^2} \sinh ^{-1}(a x)} \, dx\)

Optimal. Leaf size=9 \[ \frac{\text{Shi}\left (\sinh ^{-1}(a x)\right )}{a^2} \]

[Out]

SinhIntegral[ArcSinh[a*x]]/a^2

________________________________________________________________________________________

Rubi [A]  time = 0.0801654, antiderivative size = 9, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {5779, 3298} \[ \frac{\text{Shi}\left (\sinh ^{-1}(a x)\right )}{a^2} \]

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[1 + a^2*x^2]*ArcSinh[a*x]),x]

[Out]

SinhIntegral[ArcSinh[a*x]]/a^2

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{x}{\sqrt{1+a^2 x^2} \sinh ^{-1}(a x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sinh (x)}{x} \, dx,x,\sinh ^{-1}(a x)\right )}{a^2}\\ &=\frac{\text{Shi}\left (\sinh ^{-1}(a x)\right )}{a^2}\\ \end{align*}

Mathematica [A]  time = 0.0258395, size = 9, normalized size = 1. \[ \frac{\text{Shi}\left (\sinh ^{-1}(a x)\right )}{a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(Sqrt[1 + a^2*x^2]*ArcSinh[a*x]),x]

[Out]

SinhIntegral[ArcSinh[a*x]]/a^2

________________________________________________________________________________________

Maple [A]  time = 0.034, size = 10, normalized size = 1.1 \begin{align*}{\frac{{\it Shi} \left ({\it Arcsinh} \left ( ax \right ) \right ) }{{a}^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/arcsinh(a*x)/(a^2*x^2+1)^(1/2),x)

[Out]

Shi(arcsinh(a*x))/a^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{a^{2} x^{2} + 1} \operatorname{arsinh}\left (a x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arcsinh(a*x)/(a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/(sqrt(a^2*x^2 + 1)*arcsinh(a*x)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x}{\sqrt{a^{2} x^{2} + 1} \operatorname{arsinh}\left (a x\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arcsinh(a*x)/(a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(x/(sqrt(a^2*x^2 + 1)*arcsinh(a*x)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{a^{2} x^{2} + 1} \operatorname{asinh}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/asinh(a*x)/(a**2*x**2+1)**(1/2),x)

[Out]

Integral(x/(sqrt(a**2*x**2 + 1)*asinh(a*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{a^{2} x^{2} + 1} \operatorname{arsinh}\left (a x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/arcsinh(a*x)/(a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x/(sqrt(a^2*x^2 + 1)*arcsinh(a*x)), x)